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Abstract

This paper aims to find the 7-polynomial of some special graphs. These include null
graphs, trees, cycles, some families of complete bipartite graphs and finally complete
graphs. We shall also make some observations with regards to the 7-polynomial of these
graphs. With these 7-polynomial, we shall further examine the zeros of them, i.e. the
solution of these polynomials when they are equated to zero.



Chapter 1

Introduction

Chromatic polynomial of graphs has been extensively studied in the area of graph theory
for years. It enables us to count the number of proper k-colourings of graph G whenever
k is a positive integer.

Let II(G) be the set of partitions of V(G). We let G(P) be the spanning subgraph
of G with edge set {uv € E(G) : u,v € P; € P}, for any P € II(G). P; is one set in
the partition P. Hence, G(P) is the spanning subgraph obtained from G by removing all
edges whose ends are not in the same set of P [Dong [1]].

Lemma 1.1 (Brenti [2]) For any i < p,
Pell(G)
|P|=i
where A(H) is the set of acyclic orientations of a graph H.

This allows us a way of finding the number of acyclic orientations of a graph, if we are
able to find the 7-polynomial of the graph, in any number of components.

All these will lead to the discussion of the zeros of 7-polynomials of graphs where we
observe that these zeros are all real values up to a certain order. We wish to examine if
this is indeed true for all graphs, and for a beginning, at least a certain family of special
graphs such as null graphs.



Chapter 2

T-polynomial of Special Graphs

In this chapter, we shall derive the 7-polynomial of some special graphs that will be used
to determine the 7-polynomial of these graphs up to order 8 in the next chapter. We
will build these polynomial from the definitions and theorems stated and proven in the
preliminaries section.

We will also be making some observations about the 7-polynomials of these special graphs
and try to give a proof for the observations.

2.1 Preliminaries

For any graph G, 7(G, x) is defined as

The ¢;’s are determined by the chromatic polynomial

W(Gx) = 3 (~1piega),

0<i<p
where (z); = z(x + 1)...(x +i—1).

Observation 2.1 From the definition above, we make the following general observations
applicable to all graphs so we shall not need to re-state for special families of graphs which
will be discussed later.

(). Coefficients of T(G, x) is always positive.

i). The constant terms of 7(G,x) is always zero.

(iii). The number of terms in the T-polynomial of a graph of order n is always n.
)

. The leading term of the T-polynomial of a graph of order n is always x™.
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(v). The coefficient of the leading term of the T-polynomial of a graph of order n is always
1.

Theorem 2.1 (Dong [1]) Let N, be any null graph of order p. The chromatic polyno-
maal s given by

X(Np ) =27 = 3 (~1)P5(p,i){zh

1<i<p

Proof. By substituting x with —z in the identity

2 =Y S(p,i)(@);,

i<p

we get

(—=2)? = S(p,i)(=2)i = D_(=1)'S(p,i)(2s

1<p i<p

Therefore '
X(Np,z) =2P = > (=1)P*S(p, i)(z):.
1<i<p
From this, we obtain the 7-polynomial of null graphs, i.e.
T(Np, z) = By(2),
where Bell Polynomial B, is of the form B,(z) = >, S(p,i)z".

Example 2.1 Some examples of T-polynomial of null graphs N,.

(vii).

(i). 7(Ny,z) =z
ii). 7(Ng,z) =22+ x
(i). 7(Ny, z)
(iii). 7(N3, @) = 2 +32* + x
(iv). 7(Ng,z) = 2* + 62® + T2* + =
(v). 7(Ns,x) = 2° + 10z* + 2523 + 152% + =z
(vi). 7(Ne,z) = 2® + 152° 4+ 652* + 9023 + 312% + =
). 7(N7,z)
). 7(Ns, z)

(viii).



Observation 2.2 From the example above, we make the following observations.

(i).

(ii).

(ii).

The coefficient of x is always 1.

Proof.

From the combinatorial identities of Stirling Numbers of the Second Kind, we know
that S(p,1) = 1. O
The coefficient of z"~ for (N, x) for p > 2 is @.

Proof.

From the combinatorial identities of Stirling Numbers of the Second Kind, we know
that S(p,p— 1) = (). O

The difference between coefficient of x® for p and twice the coefficient of the (p—1)"
term s always 1.
Proof.
From the combinatorial identities of Stirling Numbers of the Second Kind, we know
that S(r,n) = S(r —1,n — 1)+ nS(r — 1,n). Now, by letting r = p and n = 2 we
have

S(p,2)=8S(p—-1,1)+2S(p —1,2).

By rearranging the equation and noting that S(p — 1,1) = 1, we have

S(p,2) —2S(p — 1,2) = 1.



2.2 Trees

In this section, we shall examine the 7-polynomial of trees. Since the chromatic polynomial
of trees is equal to that of the chromatic polynomial of paths, we would be able to find
the 7-polynomial of paths using the 7-polynomial of trees.

Theorem 2.2 Let T, be any tree of order n. Then

n

T(Toyz) =Y (Z - 1>Bk(x).

k=1
Proof.
_ n _ — nei—i =1\
X(Tn,z) = z(x — 1) —1—:52(—1) PN EE
i=0

Letk=i+1,ie i=k—1.

(Tor 7) xZ(n_1> k=1(_qyneti

This implies

I
3
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o
=03
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&
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(s 7(Th:8) =2

(ii). 7(Ty,z) = 2° + 2z

(iii). 7(T3,x) = 2% + 52 + 4w

(iv). 7(Ty, ) = z* + 92° + 192° + 8z

(v). 7(Ts,x) = 2° + 14z + 5523 + 6522 + 16z

(vi). 7(Tg, z) = 25 + 202° + 1252* + 28523 + 21122 + 32z
i). 7(Ty, 2)
). 7(Tx, )

(viii).



Observation 2.3 From the example above, we make the following observations.

(i). The coefficient of x is 2"~ for 7(T,, x).

Proof.
Since a tree does not contain any cycles, we only need to consider the number of
directions for each edge. v(T,) = n — 1 implies the coefficient of x is 2" * O

(ii). The coefficient of 2" ' for 7(Ty,,x) forms a quadratic sequence for n > 2 with first
term 2 and the difference between consecutive terms forms an arithmetic progression
of first term 8 and common difference 1.

We shall now introduce the Deletion-Contraction formula for 7-polynomials and apply
this on trees, with consideration of the previously known results for null graph to verify
what we have found in the previous example.

Proposition 2.1 For any graph G with e € E(G),
7(G,z) =7(G\ e,x) + 7(G/e, x).

For a proof of this, one may wish to refer to the proof written by Dong (2017) in his
paper. An illustration of the proposition is as follows.

Consider a tree of order 3.

[ L  J
becomes
] *——o T *——@
becomes



This means T3 can be reduced into N3 + 2Ns + N(1) and the Bell Polynomial of that
would be
T(Ng + 2N2 + N(l),l’)

= Bs(z) + Ba(z) + Bi(z)
=2+ 3%+ +22°+ 224+ 2
= 23 + 5% + 4z
= 7(13, %)

Hence, we have verified the result, using the Deletion-Contraction formula, for 7-polynomials
for tree of order 3.



2.3 Cycles

We shall begin this section by introducing a proposition which we will be using to convert
the chromatic polynomial of a graph to its 7-polynomial.

Proposition 2.2 (Dong [1]) For any simple graph G of order p, if

X(Gx) =) (=1 Fat,

then

(G, z) = Z bpBi(x).

We shall now proceed to prove the result for the 7-polynomial of a cycle.

Theorem 2.3 Let C,, be any cycle of order n. Then

n

7(Cryz) =Y (Z) Bi(z) — Bi(z).

k=1

Proof.

e (e () e o (G)e s o ()

Hence, by Proposition 2.2, we have
n n n
7(Cpyx) = By(x) + <n - 1) B, 1(z)+ ...+ <2>B2(:c) + <1>Bl(x) — By (2).
Summing the terms from 1 to n, we have

n

T(Crya) = > (Z) Bi(z) — By ().

k=1



Example 2.3 Some examples of T-polynomial of cycles C,,.
= g% 4 2
Cs, ) = 23 + 622 + 63

xz* 4+ 1023 4 2522 + 14z

28 + 212° 4 1402 + 35023 + 30122 + 62

) =
=
)=

Cs,z) = 2° + 152* + 652 + 9022 + 30z
) =

Cr,x) = 27 + 2825 + 2662° + 1050z* + 1701x3 + 96622 + 126z
=

1).

i)
iii)
(iv). 7
)

1)

)

(vii). 7(Cs,z) = 28 + 3627 + 46225 + 2646x° + 69512* + 777023 + 302522 + 254z



2.4 K(2,n) Complete Bipartite Graphs

Before we consider the generalized complete bipartite graphs, we shall first examine com-
plete bipartite graphs with two and three vertices in one set. In particular, we shall
examine the family of K(2,n) complete bipartite graphs in this section. We shall also
give a proof for the chromatic polynomial of K(2,n) graphs.

Theorem 2.4 Let K(2,n) be any complete bipartite graph of order n+ 2. The chromatic
polynomial of the graph is given by

X(K(2,n),z) =x(zx—1)(z —2)" + z(z — 1)".

Proof.

Let the two vertices be u; and us. We shall consider two cases.
Case 1: uy and us are coloured with the same colour.

Clearly, the chromatic polynomial is z(z — 1)".

Case 2: uy and uy are coloured with different colours.

Clearly, the chromatic polynomial is z(z — 1)(z — 2)".

Therefore, by combining the two cases we have

X(K(2,n),z) =xz(zx—1)(z —2)" + z(z — 1)™.
O

Next, we shall proceed to find the 7-polynomial of K (2,n) complete bipartite graphs using
the chromatic polynomial we have found earlier.

Let K(2,n) be any complete bipartite graph of order n + 2. Then

(K (2,1), ) = Bpya(z) + HZH (242 <n _Z - 2) 42 1) (n _Z B 1>]Bn_k(x).

k=—1

Proof.

n n

X(K(2,n),2) = o(e=1)(@=2)"+u(z-1)" = (+"~2) ) <n> ED) L (”) 2i(—1)n

X 1 5 4
=0 1=0

n

- i (Z‘) (= 2)" T i C‘) r T (=2)" Z CL) z Tt (—1)"

=0 i=0

10



Next, we consider the coefficients of "2, "1 ... 2" * terms.

Coefficient of 2" = () = 1.

n

Coefficient of "™ = —[2(_ ")) + () — ()]

n—1 n n

Coefficient of 2™ = 22( "y +2( ") — ("))

n—1

In general, the coeficient of z"~% = 2k+2( ™ ) 4 (2K —1)( » )

Therefore by Proposition 2.2, we have

n

7(K(2,n),2) = Bpya(z) + ”ZH [2+2 (n L 2> @ - <n k-1

k=—1

e
O

Example 2.4 Some examples of T-polynomial of K(2,n) complete bipartite graphs.

(i). 7(K(2,1),2) = 23 + 522 + 4x
(ii). 7(K(2,2),2) = 2* + 1023 + 252% + 14z
(iii). 7(K(2,3),z) = a® + 162* + 762> + 1192% + 462
(iv). 7(K(2,4),z) = 2% + 232° 4+ 1732 + 5082° + 5412% + 146z
(v). T(K(2,5),2) = o7 + 312 + 33525 + 15602 + 31362 + 237522 + 454
(vi). T(K(2,6),2) = 2%+ 4027 + 58426 + 392527 + 12621* + 183402 + 1016522 + 1394z

From the example above, we can compare the 7-polynomials to other special graphs.
For example, K(2,1) is isomorphic to a tree of order 3 and K (2,2) is isomorphic to the
cycle Cy. By comparing the earlier results, we observe that the 7-polynomial of K(2,1)
and K(2,2) are equal to the 7-polynomial of a tree of order 3 and that of a cycle Cj
respectively.
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2.5 K(3,n) Complete Bipartite Graphs

We shall now consider K (3,n) complete bipartite graph. The proof for the chromatic
polynomial of a K (3,n) graph is similar to that of the K(2,n) graph by considering three
cases, i.e. consider the cases where the three vertices are coloured with the same colour,
different colours or two of the three vertices coloured with the same colour. Thus, we
shall not elaborate on a proof for the chromatic polynomial for such graphs. We shall
consider the T-polynomial for a K(3,n) graph and give a proof for it.

Theorem 2.5 Let K(3,n) be any complete bipartite graph of order n + 3. Then

F K (8 1) F) = Bpril®)

+-ngM3<n_z_*J-+@“ﬁ—3@“%)< ! >+«%T*U—3@“”%+H3mw@»

e n—k—2
Proof.
X(K(3,n),2) = (2 — 327 +22) ) (”) R )
im0 N
2 ~ (n i(_eyn—i ~ (n i 1\n—i
+(3z° — 3x) ' <Z>x( 2) —I—:I:Z<Z>x( 1)
=0 =0
_ Z xi+3(_3)n—i _3 Z xi+2(_3)n—i +92 Z xi+1(_3)n—i
i=0 i=0 i=0
+3 Z xi+2(_2)n—i _3 Z xi+3(_2)n—i + Z xi+1(_1)n—i
i=0 i=0 i=0
Next, we consider the coefficients of "3, z"*2 .. 2" * terms.

Coefficient of "3 = (”) =1.

Coefficient of 272 = (=3)1(.",) — 3(") +3(")
Coefficient of 2" = (=3)2( ") —3(,",) +3(=2)* (") +2(=3)°(") —=3(-2)° (") +(-1)°(?)

n—2 n n n

From the above, we find the coefficient of the general term 2"~ % to be

(e, L) e,

I[P <n _Z B 1) — 3(—2) (n _Z _ 1) + (1) <n _Z — 1)
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Note: From this we observe that for the six terms in the coefficient, the powers observe
the pattern of even, even, odd, even, even, even or odd, odd, even, odd, odd, odd which
helps us to decide the polarity of the terms in the subsequent part where we find the
expression for the 7-polynomial of K (3,n).

Therefore by Proposition 2.2, we have

n+1

+ Z [3k+3

k=—2

(

n
n—%k—3

F K (8 1) F) = Bpril®)

)ar—aze(

n
n—=k—2

>+(2(3’“+1)—3(2’“+1)+1)<

Example 2.5 Some examples of T-polynomial of K(3,n) complete bipartite graphs.

(i
(ii

(iii

T

(iv

).
).
).
).
(v)-

); )
); )
); )
); )
); )

(K(3,1),z) = z* + 923 + 1922 + 8z

3,2), ) = z° + 16x* + 7623 + 11922 + 462
28 4+ 242° 4+ 1912* + 60622 + 72122 + 230z

,4),2) = 27 + 332 + 38625 + 19922 + 459423 + 421122 + 1066

3,5),z) = 2% + 432" + 6862° + 5150x° + 19071z* + 3335423 + 2380922 + 4718z

From the example above, we can compare the 7-polynomials to other special graphs. For
example, K (3,1) is isomorphic to a tree of order 4 and K (3,2) is isomorphic to K(2,3).
By comparing the earlier results, we observe that the 7-polynomial of K(3,1) and K (3,2)
are equal to the 7-polynomial of a tree of order 4 and K (2, 3) respectively.
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2.6 K(m,n) Complete Bipartite Graphs

The chromatic polynomial of the general complete bipartite graph is given below

X(E(m,n),z) =Y > S(m,1)S(n,s)()rs = Y S(m,r)S(n,s)(@)

r=1 s=1 rd+s=k

In general,
<=2 [ +s|
(X)pys =x(x—1D)(z—2)(z—r—5+1) = Z [ , ]:1:2.
i=1
We can covert this to an expression in terms of the Bell polynomial, i.e.

@ro=3 [ ] muco

k=1

Hence, we have

We shall apply the result, without proof, to verify the results for the 7-polynomial of
K(2,n) and K(3,n) to be true.

BP:= (p q)—-sm[sm[(—1)p+q_s_‘_8tirh'ng2(qv t) -Stitling? (p. 5)-Mis+1),1=1 _g], s=1 _p];

g 49
BP = (p.g) — 2, 2. (—1)P 97" Tstiling) (g, 1) Stirling2(p, 5) M(s + 1)

Ly
]
—
]
—

for gfrom 1 to6 dog. BP(2, g) od;
1.2 + 52 +4x
2+ 1075 + 254 + 14x
3.0 +16x° + 762 + 1192 + 46 x
454230 417320 + 5082 + 5412 + 146 x
o 6 i 4 3 )
5% + 3128+ 33520 + 1560 %" + 3136 + 2375 + 454x

3 W TR 8 i 8 3 53
6,x +40x + 584x + 3925 + 12621x + 18340 + 10165 + 1394 x
for gfrom 1 to 5 dog. BP(3, g) od;

Lt +9xX +192 + 8x
2.0 + 167 + 76X + 1192 + 46 x
3.8 4+ 2427 + 191 + 6065 + 7212 + 230x
7 6 5 4 ge e
4% +33:5 + 38620 + 1992 ¢ + 459427 + 42112 + 1066 x
5.8 + 43 % + 686x° + 515020 + 19071 + 333547 + 238092 + 4718 x
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Example 2.6 Some examples of T-polynomial of K(4,n) complete bipartite graphs.

(i). 7(K(4,2),z) = 2% + 232° + 1732 + 5082° + 5412% + 146z

(ii). 7(K(4,3),2) = 27 + 3325 + 3862° + 1992z* + 459423 + 421122 + 1066z
(iii). 7(K(4,4),7) = 28+ 442" + 7222% + 56142° + 21741x* + 4031823 + 3115322 + 6902z
Example 2.7 Some examples of T-polynomial of K(5,n) complete bipartite graphs.

(i). 7(K(5,2),z) = 27 + 312% + 33525 + 15602 + 313623 + 237522 + 454z

(ii). 7(K(5,3),x) = 28 + 4327 4 68626 + 51502° + 19071z + 333542° + 2380922 + 4718z
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2.7 Complete Graphs

We shall use the following proposition to find the 7-polynomial of complete graphs using
induction.

Proposition 2.3 (Dong [1]) Let n be a simplicial vertex of G with degree k, then
7(G,z) =27(G —u,z) + (z + k)7(G — u, x).

We shall formally state the result for the 7-polynomial of a complete graph.

Theorem 2.6 Let K, be any complete graph of order n. Then

T(Kpz) =Y m Bi(x) =Y Y S(k,i) m 7

k<n i<n i<k<n

Proof. Since n = 1 is a null graph, it is trivial.

Suppose the result holds for p < N — 1, i.e.
N-1N-1

N —1] .

T(Kp,x) S(k [ ]xz.

i=1

2

e
Il

7

Next, we shall apply Proposition 2.1 to prove the case for p = N. Since graph Ky has
vertices of degree N — 1, we have k = N — 1.

Thus, we have

N —-1| .,
T(Kn_1,%) = iS(k,i)[ . ]xz_l,
i=1 k=i
Multiplying both sides by x, we have
N-1N-1
N —-1] |
7 (Ky_1,2 1S(k [ i ]xz.

=1 k=3

Next, we also have

2

(:c—I—N—l)T(KN_l,x):(x—I—N—lZINZIS [ 1}3:

=1 k=i

By combining the above two, based on Proposition 2.1, we obtain

~1N-1 B 1N-1 1 N-1N- 17 .
(K, z) ZZszz [ ]x—l—zz S(k,1) [ ] ZZ [ ]x”l
i=1 k=1 =1 k=i i=1 k=i
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We shall compare, term by term, the above to what we wish to prove, i.e.

First, we consider the coefficient of the zV term.

S(N—1,N—1)m:ﬂ =1 :S(N,N)[ﬂ

The above shows that the coefficients of 2V corresponds for both forms.
Next, we shall consider the coefficient of 7, where 1 < j < N — 1. We expect to obtain

ivjb“(mm

k=j

Next, we have

N-1 N-1 N—-1
. L[N =1 , N -1 LN =1
> st ]+ X swa-n|Y e X -vsea| Y
k=j k=j—1 k=j
By combining the first two terms, we have
N—-1 N-1
AN -1 . . N -1 AN -1
Siste+ 1| i+ se- -0 Y e -vsea |V,
k=j k=j

This simplifies into

=z

-1

k

[S(lﬁ—l,j){N_l]]%— {N_l

e
I

J

Finally, we obtain

k=j—1 k=j

Let s = k + 1 for the first term, i.e. K = s — 1, we have

sV S -nsea[¥ ]

k=j



Interchanging s and k, we have

N N-1
LN =1 LN =1
Sost) |y 4]+ 2 - vsta| Y .
k=j k=j
Since [N]; 1] = 0, we can rewrite the above as

By induction, this proves that the 7-polynomial of complete graphs is

T(Knya)= > m Bi(z) =3 3" S(k,i) m %

k<n i<n i<k<n

Example 2.8 Some examples of T-polynomial of complete graphs K,.

7(Ks, x) = 2%+ 562" 4+ 11762° + 117602 + 588002* + 1411202° + 14112022 4+ 40320z

(i). 7(Ky,x) = 2% + 2z
(ii). 7(K3,x) = 2% + 622 + 62
(iii). 7(Ky4,z) = z* + 122 + 3622 + 24z
(iv). 7(K5,x) = 2° + 202* 4+ 12023 + 24022 + 120z
(v). 7(Ke, ) = 2 + 302 + 3002* + 12002% + 180022 + 720z
(vi). T(Kr7,x) = 27 + 4225 + 6302 + 42002* + 126002% + 1512022 + 5040z
). 7(Ks, x)

(vii).

From the example above, we can compare the 7-polynomial of K3 to C3 as they are
isomorphic. We find that their 7-polynomial are indeed equal.
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Chapter 3

Zeros of T-polynomials

From chapter 2.1, we know that the 7-polynomial of trees is

n

7(T, ) :Z Z:i By(z).

n=1

Conjecture 3.1 (Brenti [2]) Let G be any graph of order n and 7(G,z) be the -
polynomial of graph G. All the roots to the equation T7(G,x) = 0 are real.

The above conjecture has been verified true for all connected graphs with order of at most
8, in a paper written by F. Brenti (1992). Indeed, in the computation of the roots of the
T-polynomials of special graphs considered in this paper, the roots of the polynomials
are all real up to order 10 or more. For example, it is observed that the zeros of the
T-polynomials of null graphs are all real up to order 15, as shown below.

> B = n—sum|Stiding2(n i) . i=1.n)
n
B=nw— EStirlingﬂn_ HEY
i=1
> form from1to15 dofsoive(Bim))od
0.
=10
—2.618033989. —0.3819660113. 0.
—4.490863615, —1.343379569, —0.1657568157. 0.
—6.510134099, —2.651692996, —0.7621690715, —0.07600383436, 0.
—8.626187889, —4 180787855, —1.703869167, —0.4532506380, —0.03590445077, 0.
—10.81168380, —5.863022111, —2 890457788, —1.140450386, —0.2771164073, —0.01726950400, 0_
—13.04980249, —7.658280786, —4.256556522, —2.071975715, —0.7824237540, —0.1725575136, —0.008403221457, 0.
—15.32938803, —9.540782698, —5.759647508, —3.192778888, —1.518604931, —0.5458249710, —0.1088520768. —0.004120894575, 0.
—17.64262441, —11.49292568, —7.370871513, —4.462998865, —2.443761215, —1.130068321, —0.3853872493, —0.06933098558, —0.002031760027, 0.
—19.98380218, —13.50212136, —9.069797508, —5.853879254, —3.523226505, —1.896751951, —0.8503315329, —0.2745959895, —0.04448817149, —0.001005542393, 0
—22.34861127, —15.55903240, —10.84143167, —7.344239160, —4.730184039, —2 817538176, —1 487406222, —0.6452926917, —0.1970499476, —0.02871542139,
—0.0004990082434. 0.
—24.73371012, —17.65652621, —12.67443538, —8.918094305, —6.043999910, —3.868595124, —2. 274898873, —1.175677403, —0.4929825562, —0.1422090127,
—0.01862297506, —0.0002481241616, 0.
—27.13645049, —19.78902109, —14.56001651, —10.56310327, —7.448626367. —5.030657330. —3.192503284, —1.850453190, —0.9351471636. —0.3786648738,
—0.1031079938, —0.01212488181, —0.0001235532107, 0.
—29.55469440, —21.95205973, —16.49121188, —12.26954124, —8.931395758, —6.288238257, —4.222829582, —2.653046251, —1.514153929, —0.7476465893.
—02921549337, —0.07504603652, —0.007919831359, —0.00006158817753, 0.
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To prove that the zeros of 7-polynomial of null graphs are all real, we need to first prove a
result regarding the number of real roots of the sum of a function P(z) and its derivative
P'(z).

Theorem 3.1 Let P(z) be a polynomial of order n in the form a,z™ + an_12™ 1 + ... +
azx + ag. If P(x) has n different real roots, then P(z) + P'(x) also has n different real
T00tS.

Proof.
We shall first verify that the result holds for order 4, and observe an inductive pattern
from there.

Let roots of P(x) be r; and P'(z) be s;.

It is clear that for P(z) and P'(z), a root exists in the intervals where either P(z) or
P'(x) is positive and the other is negative.

'|| PE) il

1
1 51 I8 $2 F3 53 ¥a

From the diagram above, we can see that a root for P(z) + P'(x) exists in each of the
following intervals
(817 T2)7 (527 T3)7 (537 T4)‘
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Since the leading term in P(z) is one order higher than that of P’(z), a root also exists
in the interval (—oo,r;) for P(x) + P'(x). This implies that there are 4 different roots for
P(z) + P'(z) = 0 when P(z) is of order 4.

Consider P(z) of order n.

By similar reasoning, there exists a real root in the interval (—oo,r;). Next, there exists
a real root in each of the intervals

(317 TQ)) (327 T3)7 G (Sn—h Tn)-
Hence, there exist n different roots for P(z) + P'(x) = 0. O
Next, we shall begin to prove that the zeros of 7-polynomial of null graphs are all real.
Theorem 3.2 Let N, be any null graph of order p. The roots of T(Np, x) = 0 are all real.

Proof. We shall prove this by induction.
Base case is trivial since the solution to By(z) = 0 is 0.

Next, suppose result holds for p < N — 1.
T(Np,z) =0
By Proposition 2.1, we have
z7(Np — u,z) + (z + 0)7(Np — u, ).
This implies either x = 0 or
7(Np —u,x) + 7(Np — u, z) = 0.
Now, N, — u is the same as N,_;. Therefore, we have
7' (Np-1,2) + T(Np-1,2) =0,

Since we have earlier assumed that the roots of null graphs of order N — 1 or less are all
real, by theorem 3.1, we can also say that the roots of 7/(N,_1, )+ 7(N,_1,2) = 0 are all
real.

This implies there are only real roots for 7(N,,z) = 0. O
Next, we shall turn our focus and numerically examine the roots of 7-polynomials. The
use of Maple will help us to quickly find these roots and be able to verify that the result

is true up to a certain order. For the case of complete bipartite graphs, we shall focus on
K(2,n) and K(3,n) graphs.

21



Using maple we are able to find that the roots of the 7-polynomials of trees up to order
15, indeed has only real roots as shown in the diagram below.

> Ti= m—sum(binomial(m — 1. k— 1) B(k). k=1_m)

=1
:>
> for mfrom 1 to 15 dofsolve(T(m))od
0.
=240,

—4.000000000, —1.000000000, 0.
—6.100431986, —2.338879686, —0.5606883283, 0.
—8.273750630, —3.898083197, —1.496707373, —0.3314587997, 0.
—10.50206428, —5.606564509, —2.689282494 —1_ —0.2020887128, 0.
—12.77350372, —7.424154904, —4.064994296, —1.925994664. —0.6856280942, —0.1257243171, 0.
—15.07980186, —9.325644597, —5.578494854, —3.047275767, —1.411162453, —0.4782903670, —0.07933010563, 0.
—17.41495476, —11.29403404, —7.199868201, —4.320764706, —2.331868345, —1.050119348, —0.3378121575, —0.05057843608, 0.
—19.77445197, —13.31724573, —8.908299962, —5.716171651, —3.410325748, — 1809866588, —0.7903161938, —0.2408197507, —0.03250241174, 0.

—22.15481024, —1538635139, —10.68868582, —7.211552090, —4.618205451, —2.727143872, —1 419405201, —0.5999149970, —0.1729158620, —0.02101507646, 0
—24.55327773, — 1749454114, —12.52968969, —8.790531357, —5.934023362, —3.776830068, —2.202009743, —1.122106274, —0.4584650709, —0.1248714622,

—0.01365410075, 0.
—26.96763852, —19.63648781, —14.42256713, —10.44056759, —7.341240616, —4.938863139, —3.116820237, —1.791328915, —0.8927095559, —0.3522741053,

—0.09059595911, —0.008906421947. 0
—29.39607908, —21.80793607, —16.36041806, —12.15183578, —8.826899384, —6.197258921, —4 145764983, —2.590288587, —1 465951557, —0.7138690635,

—0.2718891959, —0.06598105102, —0.005828270151, 0
—31.83709436, —24.00542653, —18.33769290, —13.91648887, — 1038067274, —7.539182195, —5.273882520, —3.503213204, —2.164862876, —1.205530968,

—0.5732905886, —0.2106297191, —0.04820842042, —0.003824105189, 0.

Next, we also observe that the roots of the 7-polynomials of cycles up to order 15, indeed
have only real roots as shown in the diagram below.

C == m—-B(1) + swn(binomial (m. k) -Bik). k=1 .m)

e

C=m~— -B(1) +

]

for mirom 1 to 15 do fsoive(C(m) )od
SR
—4.732050808, —1.267949192, 0.
—6.470895516, —2.739288614, —0.7898158701. 0.
—8.629711838, —4.161957670, —1.723770028, —0.4845604641, 0.
—10.81145618, —5.865163613, —2.884336084, —1.142282275, —0.2967618463, 0.
—13.04981373, —7.658115722, —4.257382991, —2.070392341, —0.7811946609. —0.1831005582, 0.
—15.32938759, —9.540792169, —5.759576249, —3.193033301, —1.518287570, —0.5447449023, —0.1141782244, 0.
—17.64262442, —11.49292525, —7.370875991, —4 462974967, —2 443828513, —1.130037108, —0.3847792822, —0.07195446303. 0.
—19.98380218, —13.50212138, —9.069797288, —5.853880849, —3.523219638, —1.896767476, —0.8503451716, —0.2742985669, —0.04576744899, 0.
—2234861127, —15.55903239, —10.84143168, —7.344239078, —4.730184518, —2.817536409, —1.487409203. —0.6453047393, —0.1969133563, —0.02933735436, 0.

—247337T1012, —17.65652621, —12.67443538, —8.918094309, —6.043999884, —3 868595252, —2. 274898458, —1.175677770. —0.4929885094, —0.1421482664.

—0.01892543386, 0.
—27.13645049, —19.78902109, —14.56001651, —10.56310327, —7.448626368, —5.030657323, —3.192503316, —1.850453102, —0.9351471182, —0.3786677369.

—0.1030814316, —0.01227224754, 0.
—29.55469440, —21.95205973, —16.49121188, —12.26954124, —8.931395758, —6.288238257, —4.222829580, —2.653046259, —1.514153913, —0.7476465309,

—0.2921561271, —0.07503452265, —0.007991809231. 0

—31.98668839, —24.14202119, — 1846240664, —14.02960710, —10.48215527, —7.628818909, —5351372707, —3.568231818, —2.217144408, —1.245001018,
—0.6002854563, —0.2262512917, —0.05479326240, —0.005222528382. 0.
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We observe that the roots of the m-polynomials of complete graphs up to order 15 also
have real roots only.

K= s—am([-1)""7 stidingl (5. 7) B(r).r=1.3)
Ki=5+ zl(—l):_rStirlingl(s, r) B(r)
=
for tfrom 2 to 15 dofsoive(K(1)) od
=250
—4.732050808, —1.267949192, 0.
— 7758770483, —3.305407289, —0.9358222275,0.
—10.95389431, —5.731178752, —2.571635008, —0.7432919280, 0.
—14.26010307, —8.399066971, —4.610833151, —2.112965959, —0.6170308533, 0.
—17.64596355, —11.23461043, —6.918816567, —3.876641520, —1.796299810, —0.5276681217, 0.
—21.09217691, —14.19416555, —9.420699383, —5.916297249, —3.352050503, —1.563586190, —0.4610242198, 0.
—24.58595524, —17.24973553, —12.07005513, —8.161709688. —5.181943101, —2.956254556, —1.384963185, —0.4093835732. 0.
—28.11834338, —20.38218199, —14.83591452, —10.56732081, —7.221786539, —4.616882515, —2 646033841, —1.243357962, —0.3681784529, 0.
—31.68280097, —23 57778709, —17.69648757, —13.10172358, —9.428354813, —6.487353031, —4.166840988, —2 395869925, —1.128253356, —0.3345286763. 0

—35.27439070, —26.82634995, —20.63580567, —15.74226029, —11.77100657, —8.527292008, —5.894911172, —3.7990476006, —2.189611942, —1.032797399,

—0.3065267021, 0.
—38.88928438, —30.12005863, —23.64178375, —18.47199663, —14.22715236, —10.70738869. —7.792813940. —5.405491020, —3.492354070, —2.016492139,

—0.9523260414, —0.2828583432, 0.
—42.52444757, —33. 45278497, —26.70503410, —21.27791176, —16.77961364, —13.00562240. —9.832808251, —7.180610494, —4 993575607, —3.232418699, —1.865033815,

—0.8835503074, —0.2625883982. 0.

—46.17743002, —36.81962426, —29.81810512, —24.14975795, — 1941499283, — 1540498803, —11.99370343, —9.098302704, —6.661341497, —4 641634067, —3.009132459,
—1.741872401, —0.8240822200, —0.2450330151, 0.

Likewise, we find that the roots of 7-polynomials of complete bipartite graphs K(2,n)
also have only real roots for order up to 12.

K= m—B(m+2) + swnl (25 2-binomial (m, m — k— 2) + (2571 — 1) -binomial(m, m — k— 1)) -B(m — k). k=-1.m+ 1)

mil[zhl[m_r?c_gj £ (2.t+1_ 1) [m_fz_ 1]]3(’”_@]

KE=m—Bm+2)+
k=-1

for mfrom 1 to 12 dofsolve( K(m) )od
—4.000000000, —1.000000000, 0.

—6.470895516, —2.739288614, —0.7898158701, 0.
—8.893700143, —4.536196657, —2_, —0.5701032004, 0.
—11.31051766, —6.421656777, —3.390622361, —1.475373692, —0.4018295091. 0.
—13.73249598, —8.379975851, —4.920663085, —2.588832021, —1.095276813, —0.2827562476, 0.
—16.16316233, —10.39759474, —6.559359873, —3 860841391, —2_ —0.8191061565, —0.1999355161. 0.
—18.60350417, —12.46424568, —8.285246704, —5.258189138, —3.070203847, —1.559194961, —0.6171416485, —0.1422738536, 0.
—21.05353974, —14.57214982, —10.08283219, —6.757535923, —4.273971851, —2.465018484, —1224911581, —0.4681652920, —0.1018751123,0.

—23.51290099, —16.71530598, —11.94056109, —8.341748133, —5.588145174, —3.507782520, —1.994256930, —0.9686387162, —0.3573010661, —0.07335940448, 0
—2598107474, —18.88899115, —13 84957106, —9 997825565, —6.995317955, —4 665588804, —2 900528720, —1 623590649, —0.7703039089, —0.2741214643,

—0.05308559089. 0.
—28.45750850, —21.08941910, —15.80290539, —11.71564578, —8.482035808, —5.921482878, —3.923812101, —2.412965339, —1.328846272, —0.6155426350,

—0.2112576162, —0.03857858410, 0.
—30.94165803, —23.31350448, —17.79499507, —13.48715954, — 1003766068, —7.262083265, —5.048110704, —3 319284862, —2.017507267, —1.092532091,

—0.4939212618, —0.1634447224, —0.02813802533, 0.
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Lastly, we find that the roots of 7-polynomials of complete bipartite graphs K (3,n) also
have only real roots for order up to 12.

K== m—B(m+3) + sum( (37> binomial (m, m — k— 3) + 3** > -binomial (m, m — k— 2) — 3-2°" 2-binomial (m, m — k— 2) + 235+ L binomial(m, m — k— 1) — 3.25+!
‘binomial (m, m — k— 1) + binomial (m, m —k—1))-Bim — k). k=2 .m + 1)
m+1 3
k+3 m k+3 m aak+2 n k+1 m ket m m -
k;3[3 [m—k—3]+3 [m—k—z] o [m—k—2]+23 [m—k—l] 52 [m—k—l)+[m—k—1}]3(m k)J

for mfrom 1 to 12 dofEoive( K(m) Jod

E=m—Bm+3)+

—6.100431986, —2.338879686, —0.5606883283, 0.
—8.893700143, —4.536196657, —2_ —0.5701032004, 0.
—11.55349678, —6.660658312, —3.622472761, —1.669029476, —0.4943426688, 0.
—14.15869126, —8.798409325, —5.326670971, —2.954772716, —1.362384672, —0.3990710561. 0.
—16.73686411, —10.96084409, —7.106762411, —4.368334152, —2.418660098, —1.096032265, —0.3125028761. 0.
—19.30039672, —13.14888307, —8.951656161, —5.885263265. —3.617262501, —1.978620274, —0.8759289915, —0.2417840260, 0.
—21.85649105, —1536104775, —10.85169705, —7.437666998, —4.931196972, —3.007833051, —1.618822600, —0.6988897783, —0.1863547452, 0.
—24.40832380, —17.59529982, —12.79907636, —9.162055473, —6.341182423, —4.157679560, —2.508233513, —1.326357471, —0.5581739693, —0.1436176170, 0

—26.95838226, —19.84963330, —14.78752102, —10.89800091, —7.832704330, —5.409168471, —3.520304670, —2.097446606, —1.089225373, —0.4467585302,

—0.1108545247, 0.
—29.50810605, —22.12220782, —16.81195175, —12.68726736, —9.394467646, —6.747787325, —4.636985010, —2.991076537, —1.758975402, —0.8968876017,

—0.3585285562, —0.08575894867, 0.
—32.05842423, —24.41138732, —18.86820866, —14.52322991, —11.01746503, —8.162099305, —5.844185967. —3.990564601, —2.549492615, —1.479354700,

—0.7405593968, —0.2885150302, —0.06650923311, 0
—34.60994494, —26.71573220, —20.95284441, —16.40047523, —12.69439690, —9.642883718, —7.130639733, —5.082527625, —3 445780545, —2.179515829, —1.247625995,

—0.6131292718, —0.2327958093, —0.05170779428,0

From the discussion above, we can see that the roots of 7-polynomials are all real for
order 10 or more. This presents a sort of consistency, considering the earlier proof that
all the 7-polynomials of null graphs have only real roots, which points towards a more
general result as stated in the conjecture. Proof that the 7-polynomials of other special
graphs may involve more complex manipulation which is beyond the scope of this study.
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Chapter 4

Conclusion

We have seen various ways of finding the 7-polynomials of some special graphs using var-
ious techniques and approaches. Examining these polynomials further, we observe that
when we solve for the roots of these polynomials, i.e. zeros.

Each of these 7-polynomials represents a combinatorial perspective of the properties of
each graph with respect to its acyclic orientations. In some cases, it is clear that the
consideration of the number of components of the special graph is not a straightforward
exercise. As such, it may seem difficult to observe any noticeable trend or pattern with
respect to the coefficients of certain terms in the 7-polynomials of these graphs. Further-
more, we can observe that as the power of these 7-polynomials get higher, the coefficients
become rather large, especially for graphs with appears more complex than others.

In the previous chapter, we have proven that for all null graphs, the 7-polynomials have
only real roots. Other families of graph may require more complicated steps in the proofs,
especially considering the combinatoric requirement of their 7-polynomials. Hence, in fu-
ture studies, one may wish to prove that the roots of 7-polynomials of various special
graphs are all real. Furthermore, it would be of interest to study if the roots of 7-
polynomials of all graphs are real.

25



Bibliography

[1] Dong, F. (2017, May 26). Polynomials Related to Chromatic Polynomials. Retrieved
from NIE MME.

[2] F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer.
Math. Soc. 332 (1992) 729-756.

26



